OAGi JSON Schema Naming and Design Rules (NDR)
and REST Usage Design Guide

Authors:
Michael Rowell, Oracle, OAGi
David Connelly, OAGi

Contributors:
Scott Nieman, Land O’Lakes
Steffen Fohn, ADP

Frank Heinrich, iBASEt
Kurt Kanaskie, Invited Expert

OAGi Document Version 0.04
As of March 12, 2015
Copyright 2015 Open Applications Group, Inc. - All Rights Reserved



NOTICE

The information contained in this document is subject to change without notice.

The material in this document is published by the Open Applications Group, Inc. for evaluation.
Publication of this document does not represent a commitment to implement any portion of
this specification in the products of the submitters.

While the information in this publication is believed to be accurate, open applications group,
inc. makes no warranty of any kind with regard to this material including but not limited to
the implied warranties of merchantability and fitness for a particular purpose. Open
Applications Group, Inc. shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

This document contains proprietary information, which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright hereon may be reproduced or used in any
form or by any means—graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems—without permission of the copyright
owner.

Restricted Rights Legend. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer
Software Clause at DFARS 252.227.7013.



Table of Contents

OAGi JSON Schema Naming and Design Rules (NDR)
Abstract
Audience
Introduction
OAGIS JSON Schema NDR Basis
JSON Schema differences from XSD NDR
OAGIS JSON Schema Message Architecture
OAGIS REST Verb Reference
OAGIS Verbs and their REST counterparts




OAGi JSON Schema Naming and Design Rules (NDR)

Abstract

The Open Applications Group Integration Specification (OAGIS) provides a canonical business
language for vertical industries. Individual organizations and entire supply chains may further
extend the specification in ways that meet their own unique needs. It is important for OAGi to
define the naming, design rules and guidelines used for OAGIS in such a manner that these
organizations may follow them for their extension.

This specification provides a means to identify, capture and maximize the re-use of business
information components within OAGIS and OAGIS extensions in order to support information
interoperability across integrated environments.

Thank you to all who have contributed to the design, construction, and reviewing of the
document. If we have missed anyone in our credits, we apologize to you.

This document will continue to grow as more details are added and updated.

Audience

The intended audience for this document is someone who has prior experience with OAGIS XML Naming
and Design Rules. This document references the UN/CEFACT Naming and Design Rules 3.0.






Introduction

OAGIS JSON Schema NDR Basis

The OAGIS JSON Schema uses the UN/CEFACT Naming and Design Rules 3.0 as its basis.

JSON Schema differences from XSD NDR

OAGi - Naming Design Rules and differences for JSON
® Best practices for XML is to use UpperCamelCase for XML elements. Best practices for
JSON is to use lowerCamelCase for JSON attributes.
o This is matter of personal preference for the given developers. In order to be
accepted by the developer community the preference must be followed.
o The Working Group surveyed best practices and LowerCamelCase was chosen
because many of the most prominent JSON implementations including Google,
o NOTE: Go get the list Scott sent out - before finalizing this decision

o XML has elements and attributes. JSON has only attributes.
o All content will be expressed in JSON attributes meaning no distinction of level in
how Supplementary Components and Content Components are represented.
However, values will be expressed as the base data type in which they are
defined.
e Examples of these differences:
XML: <TotalAmount unitCode="Each”>486<TotalAmount>
JSON: {“totalAmount” : {“unitCode” : “Each”, amount : “486"}}

In JSON the convention is to use plurals form of the element tag for elements that have
cardinality greater than 1. (Note this does always mean ending in ‘s’.)

OAGi endorses the OData URI convention for resource paths and query options, reflecting the
goals of the Richardson Maturity Model.

OAGIS JSON Schema Architecture

The BOD architecture is NOT planned to be used at this time. The focus is on using Nouns and
Components for the data definitions.



The Verbs used for OAGIS JSON Schema API’s or messages uses the REST mechanism verbs in
lieu of the OAGIS Verbs. The Verb guidelines are below.

OAGIS REST Verb Reference

This section is meant to be a short guide to implementing the OAGIS Verbs as transactions. We
start with the Verb definitions, then describe applying them in design patterns.

Assumption: OAGIS will start with the base REST Verbs, GET, PUT, DELETE, POST
Definitions of each base verb below:

REST Verb Description
POST The POST is used to create a resource.
GET The GET verb is used to read a resource. An important rule

of thumb is that a GET operation is safe. That is, it can be
done repeatedly without changing visibly the state of the

resource.

This property is very important for various reasons. First,
indexing engines use GET to index the contents of a
resource. So it would be bad if indexing a resource also
changed it. Second, intermediaries, such as proxies, may
cache results of a GET operation to accelerate subsequent
accesses to the same resource.

PUT The PUT and DELETE verbs allow a request to alter the state
of a resource atomically.

The PUT and DELETE verbs give us a simple mechanism to
replace or destroy a resource. Note that PUT and DELETE
apply to the entire resource and not just parts of it. So,
when doing a PUT operation, the entire resource is
replaced. This detail is very important. Important enough
to be repeated: PUT acts on the entire resource! The same
is true for DELETE: DELETE acts on the entire resource!




The PUT and DELETE operations are atomic. If two PUT
operations occur simultaneously, one of them will win and
determine the final state of the resource. The same is true
when a PUT and DELETE operation occur simultaneously.
Either the resource's final state is updated or it is deleted,
but nothing in between. In the case of two simultaneous
DELETE operations, the order does not matter, because
deleting a resource again has no effect.

If the caller provides the ID of the resource the PUT is used
to put the “updated” object. If the object does not exist
create it.

Created or replaced by the state of the representation
payload. Put return the 201 created response.

Identification of the object/resource is done by assigning an
id.

DELETE See PUT definition.

Source:
http://developer.mindtouch.com/REST/REST for the Rest of Us

A short summary of examples:

/api/users when called with GET, lists users
/api/users  when called with POST, creates user record
/api/users/1 when called with GET, shows user record
when called with PUT, updates user record
when called with DELETE, deletes user record

Source: http://stackoverflow.com/questions/2001773/understanding-rest-verbs-error-codes-

and-authentication

http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-20#page-14

OAGIS Verbs and their REST counterparts


http://developer.mindtouch.com/REST/REST_for_the_Rest_of_Us
http://stackoverflow.com/questions/2001773/understanding-rest-verbs-error-codes-and-authentication
http://stackoverflow.com/questions/2001773/understanding-rest-verbs-error-codes-and-authentication
http://stackoverflow.com/questions/2001773/understanding-rest-verbs-error-codes-and-authentication

Responses are not included for the REST Verbs because there are no responses in REST based

processing.

OAGIS Verb REST Verb

Process (with Add) POST

Process (Replace) PUT

Process (Delete) DELETE

Process (Change) No Equivalent

Sync (with options selected for Add, POST or PUT, depending on who owns the data

Change, Delete, or replace)

Sync (with Add) POST

Sync (Replace) PUT

Sync (Delete) DELETE

Sync (Change) No Equivalent

Post (synonym for Process in financial POST

scenarios)

Load POST

(Synonym for Sync in financial

scenarios)

Change PUT

Update PUT

Cancel PUT for setting a status or marking for Delete;
DELETE physically removes the record via the
URI. The data has no meaning.
If using URI resource use Delete else if using
Data Model use PUT
For now PUT

Get GET

Note: Show can be used as an

operational response to a Get

Notify Not applicable. This kind of processing is not

compatible with a RESTful environment.




Long Polling? Look it up and add a definition.

Every Notification is a new thing — It should be a
POST.

The Notify has Add, Change, Replace, and Delete
indicating that it is like the Process/Sync above.

In the RESTful world a Notification is now a
Noun, not a verb. So one would POST to a

Notification.
Notify (with Add) POST
Notify (Replace) PUT
Notify (Delete) DELETE

Notify (Change)

No Equivalent

This approach drives us to a unique ID instead of the different IDs used today for object

integration. What is the identifying URI for the object. A URI with an ID for resources in a

collection.

10




