
1

OAGi JSON Schema Naming and Design Rules (NDR)
and REST Usage Design Guide

Authors:
Michael Rowell, Oracle, OAGi
David Connelly, OAGi

Contributors:

Scott Nieman, Land O’Lakes

Steffen Fohn, ADP

Frank Heinrich, iBASEt

Kurt Kanaskie, Invited Expert

OAGi Document Version 0.04

As of March 12, 2015

Copyright 2015 Open Applications Group, Inc. - All Rights Reserved

2

NOTICE

The information contained in this document is subject to change without notice.

The material in this document is published by the Open Applications Group, Inc. for evaluation.

Publication of this document does not represent a commitment to implement any portion of

this specification in the products of the submitters.

While the information in this publication is believed to be accurate, open applications group,

inc. makes no warranty of any kind with regard to this material including but not limited to

the implied warranties of merchantability and fitness for a particular purpose. Open

Applications Group, Inc. shall not be liable for errors contained herein or for incidental or

consequential damages in connection with the furnishing, performance or use of this material.

This document contains proprietary information, which is protected by copyright. All Rights

Reserved. No part of this work covered by copyright hereon may be reproduced or used in any

form or by any means—graphic, electronic, or mechanical, including photocopying, recording,

taping, or information storage and retrieval systems—without permission of the copyright

owner.

Restricted Rights Legend. Use, duplication, or disclosure by government is subject to

restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer

Software Clause at DFARS 252.227.7013.

3

Table of Contents

OAGi JSON Schema Naming and Design Rules (NDR)

Abstract

Audience

Introduction

OAGIS JSON Schema NDR Basis

JSON Schema differences from XSD NDR

OAGIS JSON Schema Message Architecture

OAGIS REST Verb Reference

OAGIS Verbs and their REST counterparts

4

OAGi JSON Schema Naming and Design Rules (NDR)

Abstract

The Open Applications Group Integration Specification (OAGIS) provides a canonical business

language for vertical industries. Individual organizations and entire supply chains may further

extend the specification in ways that meet their own unique needs. It is important for OAGi to

define the naming, design rules and guidelines used for OAGIS in such a manner that these

organizations may follow them for their extension.

This specification provides a means to identify, capture and maximize the re-use of business

information components within OAGIS and OAGIS extensions in order to support information

interoperability across integrated environments.

Thank you to all who have contributed to the design, construction, and reviewing of the

document. If we have missed anyone in our credits, we apologize to you.

This document will continue to grow as more details are added and updated.

Audience

The intended audience for this document is someone who has prior experience with OAGIS XML Naming

and Design Rules. This document references the UN/CEFACT Naming and Design Rules 3.0.

5

6

Introduction

OAGIS JSON Schema NDR Basis

The OAGIS JSON Schema uses the UN/CEFACT Naming and Design Rules 3.0 as its basis.

JSON Schema differences from XSD NDR

OAGi - Naming Design Rules and differences for JSON

● Best practices for XML is to use UpperCamelCase for XML elements. Best practices for

JSON is to use lowerCamelCase for JSON attributes.

○ This is matter of personal preference for the given developers. In order to be

accepted by the developer community the preference must be followed.

○ The Working Group surveyed best practices and LowerCamelCase was chosen

because many of the most prominent JSON implementations including Google,

● NOTE: Go get the list Scott sent out - before finalizing this decision

●

● XML has elements and attributes. JSON has only attributes.

○ All content will be expressed in JSON attributes meaning no distinction of level in

how Supplementary Components and Content Components are represented.

However, values will be expressed as the base data type in which they are

defined.

● Examples of these differences:

XML: <TotalAmount unitCode=”Each”>486<TotalAmount>

JSON: {“totalAmount” : {“unitCode” : “Each”, amount : “486”}}

In JSON the convention is to use plurals form of the element tag for elements that have

cardinality greater than 1. (Note this does always mean ending in ‘s’.)

OAGi endorses the OData URI convention for resource paths and query options, reflecting the

goals of the Richardson Maturity Model.

OAGIS JSON Schema Architecture

The BOD architecture is NOT planned to be used at this time. The focus is on using Nouns and

Components for the data definitions.

7

The Verbs used for OAGIS JSON Schema API’s or messages uses the REST mechanism verbs in

lieu of the OAGIS Verbs. The Verb guidelines are below.

OAGIS REST Verb Reference

This section is meant to be a short guide to implementing the OAGIS Verbs as transactions. We

start with the Verb definitions, then describe applying them in design patterns.

Assumption: OAGIS will start with the base REST Verbs, GET, PUT, DELETE, POST

Definitions of each base verb below:

REST Verb Description

POST The POST is used to create a resource.

GET The GET verb is used to read a resource. An important rule

of thumb is that a GET operation is safe. That is, it can be

done repeatedly without changing visibly the state of the

resource.

This property is very important for various reasons. First,

indexing engines use GET to index the contents of a

resource. So it would be bad if indexing a resource also

changed it. Second, intermediaries, such as proxies, may

cache results of a GET operation to accelerate subsequent

accesses to the same resource.

PUT The PUT and DELETE verbs allow a request to alter the state

of a resource atomically.

The PUT and DELETE verbs give us a simple mechanism to

replace or destroy a resource. Note that PUT and DELETE

apply to the entire resource and not just parts of it. So,

when doing a PUT operation, the entire resource is

replaced. This detail is very important. Important enough

to be repeated: PUT acts on the entire resource! The same

is true for DELETE: DELETE acts on the entire resource!

8

The PUT and DELETE operations are atomic. If two PUT

operations occur simultaneously, one of them will win and

determine the final state of the resource. The same is true

when a PUT and DELETE operation occur simultaneously.

Either the resource's final state is updated or it is deleted,

but nothing in between. In the case of two simultaneous

DELETE operations, the order does not matter, because

deleting a resource again has no effect.

If the caller provides the ID of the resource the PUT is used

to put the “updated” object. If the object does not exist

create it.

Created or replaced by the state of the representation

payload. Put return the 201 created response.

Identification of the object/resource is done by assigning an

id.

DELETE See PUT definition.

Source:

http://developer.mindtouch.com/REST/REST_for_the_Rest_of_Us

A short summary of examples:

/api/users when called with GET, lists users

/api/users when called with POST, creates user record

/api/users/1 when called with GET, shows user record

 when called with PUT, updates user record

 when called with DELETE, deletes user record

Source: http://stackoverflow.com/questions/2001773/understanding-rest-verbs-error-codes-

and-authentication

http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-20#page-14

OAGIS Verbs and their REST counterparts

http://developer.mindtouch.com/REST/REST_for_the_Rest_of_Us
http://stackoverflow.com/questions/2001773/understanding-rest-verbs-error-codes-and-authentication
http://stackoverflow.com/questions/2001773/understanding-rest-verbs-error-codes-and-authentication
http://stackoverflow.com/questions/2001773/understanding-rest-verbs-error-codes-and-authentication

9

Responses are not included for the REST Verbs because there are no responses in REST based

processing.

OAGIS Verb REST Verb

Process (with Add) POST

Process (Replace) PUT

Process (Delete) DELETE

Process (Change) No Equivalent

Sync (with options selected for Add,

Change, Delete, or replace)

POST or PUT, depending on who owns the data

Sync (with Add) POST

Sync (Replace) PUT

Sync (Delete) DELETE

Sync (Change) No Equivalent

Post (synonym for Process in financial

scenarios)

POST

Load

(Synonym for Sync in financial

scenarios)

POST

Change PUT

Update PUT

Cancel PUT for setting a status or marking for Delete;

DELETE physically removes the record via the

URI. The data has no meaning.

If using URI resource use Delete else if using

Data Model use PUT

For now PUT

Get

Note: Show can be used as an

operational response to a Get

GET

Notify Not applicable. This kind of processing is not

compatible with a RESTful environment.

10

Long Polling? Look it up and add a definition.

Every Notification is a new thing – It should be a

POST.

The Notify has Add, Change, Replace, and Delete

indicating that it is like the Process/Sync above.

In the RESTful world a Notification is now a

Noun, not a verb. So one would POST to a

Notification.

Notify (with Add) POST

Notify (Replace) PUT

Notify (Delete) DELETE

Notify (Change) No Equivalent

This approach drives us to a unique ID instead of the different IDs used today for object

integration. What is the identifying URI for the object. A URI with an ID for resources in a

collection.

